Coulomb's Law
Force as a Vector Quantity
The electrical force, like all forces, is typically expressed using the unit Newton. Being a force, the strength of the electrical interaction is a vector quantity that has both magnitude and direction. The direction of the electrical force is dependent upon whether the charged objects are charged with like charge or opposite charge and upon their spatial orientation. By knowing the type of charge on the two objects, the direction of the force on either one of them can be determined with a little reasoning. In the diagram below, objects A and B have like charge causing them to repel each other. Thus, the force on object A is directed leftward (away from B) and the force on object B is directed rightward (away from A). On the other hand, objects C and D have opposite charge causing them to attract each other. Thus, the force on object C is directed rightward (toward object D) and the force on object D is directed leftward (toward object C). When it comes to the electrical force vector, perhaps the best way to determine the direction of it is to apply the fundamental rules of charge interaction (opposites attract and likes repel) using a little reasoning.Coulomb's Law Equation
The quantitative expression for the effect of these three variables on electric force is known as Coulomb's law. Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of the quantity of charge on the objects and inversely proportional to the square of the separation distance between the two objects. In equation form, Coulomb's law can be stated asThe Coulomb's law equation provides an accurate description of the force between two objects whenever the objects act as point charges. A charged conducting sphere interacts with other charged objects as though all of its charge were located at its center. While the charge is uniformly spread across the surface of the sphere, the center of charge can be considered to be the center of the sphere. The sphere acts as a point charge with its excess charge located at its center. Since Coulomb's law applies to point charges, the distance d in the equation is the distance between the centers of charge for both objects (not the distance between their nearest surfaces).
The symbols Q1 and Q2 in the Coulomb's law equation represent the quantities of charge on the two interacting objects. Since an object can be charged positively or negatively, these quantities are often expressed as "+" or "-" values. The sign on the charge is simply representative of whether the object has an excess of electrons (a negatively charged object) or a shortage of electrons (a positively charged object). It might be tempting to utilize the "+" and "-" signs in the calculations of force. While the practice is not recommended, there is certainly no harm in doing so. When using the "+" and "-" signs in the calculation of force, the result will be that a "-" value for force is a sign of an attractive force and a "+" value for force signifies a repulsive force. Mathematically, the force value would be found to be positive when Q1 and Q2 are of like charge - either both "+" or both "-". And the force value would be found to be negative when Q1 and Q2 are of opposite charge - one is "+" and the other is "-". This is consistent with the concept that oppositely charged objects have an attractive interaction and like charged objects have a repulsive interaction. In the end, if you're thinking conceptually (and not merely mathematically), you would be very able to determine the nature of the force - attractive or repulsive - without the use of "+" and "-" signs in the equation.
Calculations Using Coulomb's Law
In physics courses, Coulomb's law is often used as a type of algebraic recipe to solve physics word problems. Three such examples are shown here.
|
The first step of the strategy is the identification and listing of known information in variable form. Here we know the charges of the two objects (Q1 and Q2) and the separation distance between them (d). The next step of the strategy involves the listing of the unknown (or desired) information in variable form. In this case, the problem requests information about the force. So Felect is the unknown quantity. The results of the first two steps are shown in the table below.
Given:Q1 = 1.00 C Q2 = 1.00 C |
Find:Felect = ??? |
Felect = 9.0 x 109 N
The force of repulsion of two +1.00 Coulomb charges held 1.00 meter apart is 9 billion Newton. This is an incredibly large force that compares in magnitude to the weight of more than 2000 jetliners.
This problem was chosen primarily for its conceptual message. Objects simply do not acquire charges on the order of 1.00 Coulomb. In fact, more likely Q values are on the order of 10-9 or possibly 10-6 Coulombs. For this reason, a Greek prefix is often used in front of the Coulomb as a unit of charge. Charge is often expressed in units of microCoulomb (µC) and nanoCoulomb (nC). If a problem states the charge in these units, it is advisable to first convert to Coulombs prior to substitution into the Coulomb's law equation. The following unit equivalencies will assist in such conversions.
The problem-solving strategy used in Example A included three steps:
- Identify and list known information in variable form.
- List the unknown (or desired) information in variable form.
- Substitute known values into the Coulomb's law equation and using proper algebraic steps to solve for the unknown information. (In some cases and for some students, it might be easier to first do the algebra using the variables and then perform the substitution as the last step.)
Given:Q1 = -6.25 nC = -6.25 x 10-9 C Q2 = -6.25 nC = -6.25 x 10-9 C |
Find:Felect = ??? |
Felect = 9.23 x 10-7 N
Note that the "-" sign was dropped from the Q1 and Q2 values prior to substitution into the Coulomb's law equation. As mentioned above, the use of "+" and "-" signs in the equation would result in a positive force value if Q1 and Q2 are like charged and a negative force value if Q1 and Q2 are oppositely charged. The resulting "+" and "-" signs on F signifies whether the force is attractive (a "-" F value) or repulsive (a "+" F value).
|
Given:Q1 = +3.37 µC = +3.37 x 10-6 C Q2 = -8.21 µC = -8.21 x 10-6 C |
Find:d = ??? |
As mentioned above, the use of the "+" and "-" signs is optional. However, if they are used, then they have to be used consistently for the Q values and the F values. Their use in the equation is illustrated in this problem.
The final step of the strategy involves substituting known values into the Coulomb's law equation and using proper algebraic steps to solve for the unknown information. In this case, the algebra is done first and the substitution is performed last. This algebra and substitution is shown below.
d2 = k • Q1 • Q2 / Felect
d = SQRT(k • Q1 • Q2) / Felect
d = SQRT [(9.0 x 109 N•m2/C2) • (-8.21 x 10-6 C) • (+3.37 x 10-6 C) / (-0.0626 N)]
d = Sqrt [ +3.98 m2 ]
d = +1.99 m
Comparing Electrical and Gravitational Forces
Electrical force and gravitational force are the two non-contact forces discussed in The Physics Classroom tutorial. Coulomb's law equation for electrical force bears a strong resemblance to Newton's equation for universal gravitation.The inverse square relationship between force and distance that is woven into the equation is common to both non-contact forces. This relationship highlights the importance of separation distance when it comes to the electrical force between charged objects. It is the focus of the
No comments:
Post a Comment