Friday, 31 March 2017

DECRIBE EFFECT OF GLASS PRISM ON RAY OF LIGHT

the visible light spectrum was introduced and discussed. Visible light, also known as white light, consists of a collection of component colors. These colors are often observed as light passes through a triangular prism. Upon passage through the prism, the white light is separated into its component colors - red, orange, yellow, green, blue and violet. The separation of visible light into its different colors is known as dispersion. It was mentioned in the Light and Color unit that each color is characteristic of a distinct wave frequency; and different frequencies of light waves will bend varying amounts upon passage through a prism. In this unit, we will investigate the dispersion of light in more detail, pondering the reasons why different frequencies of light bend or refract different amounts when passing through the prism.






Image result for DESCRIBE EFFECT OF GLASS PRISM ON RAY OF LIGHTImage result for DESCRIBE EFFECT OF GLASS PRISM ON RAY OF LIGHT



Different materials are distinguished from each other by their different optical densities. The optical density is simply a measure of the tendency of a material to slow down light as it travels through it. As mentioned earlier, a light wave traveling through a transparent material interacts with the atoms of that material. When a light wave impinges upon an atom of the material, it is absorbed by that atom. The absorbed energy causes the electrons in the atom to vibrate. If the frequency of the light wave does not match the resonance frequency of the vibrating electrons, then the light will be reemitted by the atom at the same frequency at which it impinged upon it. The light wave then travels through the interatomic vacuum towards the next atom of the material. Once it impinges upon the next atom, the process of absorption and re-emission is repeated.Image result for DESCRIBE EFFECT OF GLASS PRISM ON RAY OF LIGHT

No comments:

Post a Comment

Making nitriles from aldehydes and ketones

Making nitriles from aldehydes and ketones Aldehydes and ketones undergo an addition reaction with hydrogen cyanide....