MODERN PHYSICS

HEAT

mechanics

waves

optics

electricity

APPLIED SCIENCE ARTICLES

physical chemistry

chemistry

Sunday, 30 April 2017

The reaction between ammonia and copper(II) ions



The reaction between ammonia and copper(II) ions
Copper(II) sulphate solution, for example, contains the blue hexaaquacopper(II) ion - [Cu(H2O)6]2+.
In the first stage of the reaction, the ammonia acts as a Bronsted-Lowry base. With a small amount of ammonia solution, hydrogen ions are pulled off two water molecules in the hexaaqua ion.
This produces a neutral complex - one carrying no charge. If you remove two positively charged hydrogen ions from a 2+ ion, then obviously there isn't going to be any charge left on the ion.
Because of the lack of charge, the neutral complex isn't soluble in water, and so you get a pale blue precipitate.
This precipitate is often written as Cu(OH)2 and called copper(II) hydroxide. The reaction is reversible because ammonia is only a weak base.
That precipitate dissolves if you add an excess of ammonia solution, giving a deep blue solution.
The ammonia replaces four of the water molecules around the copper to give tetraamminediaquacopper(II) ions. The ammonia uses its lone pair to form a co-ordinate covalent bond (dative covalent bond) with the copper. It is acting as an electron pair donor - a Lewis base.

No comments:

Post a Comment